GENERAL APPROACH TO THE SYNTHESIS OF α -DIFLUOROMETHYL AMINES AS POTENTIAL ENZYME-ACTIVATED IRREVERSIBLE INHIBITORS

P. Bey[×] and D. Schirlin
 Centre de Recherche Merrell International
 16, rue d'Ankara
 67084 Strasbourg Cedex, France

We recently demonstrated that 1-carboxy-lyases can be irreversibly inhibited by the α -difluoromethyl derivatives of their parent α -amino acid substrates or by the α -acetylenic analogues of their parent amine products ^{1,2}. The mechanistic rationalization of the inactivation by the α -acetylenic amines ¹ suggested that the α -fluorinated methyl derivatives of the amine products could also be potential enzyme-activated irreversible inhibitors of the corresponding 1-carboxy-lyases. We report now an efficient and general synthesis of the novel class of α -difluoromethyl amines via a sequence which also allows the preparation of the corresponding α -difluoromethyl- α -amino acids.

Our approach is depicted in Scheme I and relies, as the key step, on the alkylation of the sodio derivative (sodium hydride, 1 equiv) of the readily available monosubstituted diesters $\underline{1}^{3}$ (R₁=R₂=tBu, or R₁=Et, R₂=tBu) (0.5 M in anhydrous tetrahydrofuran) with an excess of chlorodifluoromethane ⁴ at room temperature. Under these conditions, the difluoromethyl adducts $\underline{2}$ were obtained in good to excellent yield (see table 1). Reaction of the di-tert-butyl esters $\underline{2}$ (R₁=R₂=tBu) with trifluoroacetic acid at room temperature for 1 hr afforded quantitatively the corresponding malonic acids $\underline{3}$ (R₁=H) which could be decarboxylated in good yield to the α -difluoromethyl carboxylic acid $\underline{4}$ under carefully controlled conditions (glacial acetic acid, 100 to 125°C for 12 to 24 hr) so as to minimize the oxidative decarboxylation which entails the loss of fluoride ion. Similar treatment applied to the tert-butyl ethyl esters $\underline{2}$ (R₁=Et, R₂=tBu) gave intermediarily the malonic acid hemiester $\underline{3}$ (R₁=Et) in excellent yield and then the ethyl ester derivatives of $\underline{4}$ which could be hydrolysed to the carboxylic acids $\underline{4}$ either under drastic acidic conditions (40% sulfuric acid, reflux, 12 to 24 hr) or alternatively under neutral conditions when deemed necessary, as for the ethyl ester of 4f, by using

trimethylsilyliodide ⁵ (neat, reflux, 4 hr). It is noteworthy that the diethyl esters of the fluorinated adducts $\frac{2}{2}$ (R₁=R₂=Et) proved to be extremely resistant to acid hydrolysis. Thus,

SCHEME I

a) NaH, 1 equiv, THF; C1CHF₂ excess, r.t.; b) CF_3CO_2H , r.t., 1 hr; c) glacial AcOH, 100-125°C, 12 hr; d) 40% SO_4H_2 :DME, 100°C, 12 to 36 hr; e) $SOCI_2$, reflux; f) NaN₃, 1 equiv, H_2O -Acetone, 0°C; g) reflux in benzene, 12 to 24 hr; H_3O^+ reflux, 12 hr.

<u>2a</u> ($R_1 = R_2 = Et$) was recovered essentially unchanged after treatment in 48% hydrobromic acid at 120°C for 12 hr or in a mixture of acetic acid-6M hydrochloric acid (1:2) at 120°C for 16 hr. Attempts to hydrolyse the diethyl ester <u>2a</u> under basic conditions (sodium hydroxide, 1M, 3 equiv) in a mixture of water-ethanol (1:1) (reflux, 24 hr) resulted in the loss of the difluoromethyl functionality as clearly evidenced by the absence in the ¹H NMR spectrum of the crude reaction product of the triplet (centered around δ =6ppm, J \approx 52-55 Hz) characteristic of the signal of the hydrogen in a CHF₂ group.

Transformation of the carboxylic acid function of <u>3</u> (R_1 =Et) and <u>4</u> to a primary amine could be achieved under the standard Curtius rearrangement sequence ⁶ to afford the desired α -difluoromethyl- α -amino acids <u>5</u> ⁷ and α -difluoromethyl amines <u>6</u> in fair to good yield (see table 1). This result was gratifying in view of the low yield reported for the rearrangement of 3,3,3-trifluoropropionyl azide to the corresponding isocyanate ⁸. Interestingly, the modified Curtius reaction using the non-explosive diphenylphosphoryl azide reagent ⁹ failed to give any detectable amount of α -difluoromethyl- α -amino acids or α -difluoromethyl amines ¹⁰.

R		YIELD *			
		1	<u>→ 2</u>	$\underline{4} \rightarrow \underline{6}$	$\underline{2} \rightarrow \underline{5}$
a	с ₆ н ₅ сн ₂	A	89%	60%	76%
b	з-(сғ ₃)с ₆ н ₄ сн ₂	A	85%	20%	-
с	3,4-(C1) ₂ C ₆ H ₃ CH ₂	A	70%	41%	-
d	з-(сн ₃ 0)с ₆ н ₄ сн ₂	A	70%	30%	-
e	3,4-(CH ₃ 0) ₂ C ₆ H ₃ CH ₂	A B	58%** 90%**	30%	-
f	PhtN(CH ₂) ₃	A B	54% 33%	70%****	85 %*** *

TABLE 1

Starting synthon: Method A: $tBu0_2CCH_2C0_2Et$; Method B: $CH_2(C0_2tBu)_2$; All new compounds gave acceptable elemental analyses. ¹H NMR and ¹⁹F NMR spectra were consistent with the proposed structure.

- Yields of distilled, crystallized or chromatographied products.
- Decomposition of tert-butyl ester occurs during distillation. Method B affords a crystalline derivative, thus explaining the large difference in yields.
- *** The phthalimido group (Pht) falls off during the acidic treatment. The products were isolated as dihydrochlorides.

As anticipated, α -difluoromethyl dopamine ¹¹, obtained from <u>6e</u> by cleavage of the ether functions (48% hydrobromic acid, reflux, 4 hr) and α -difluoromethyl putrescine <u>6f</u> were shown to inhibit irreversibly L-aromatic- α -amino acid decarboxylase (E.C. 4.1.1.26) and ornithine decarboxylase (E.C. 4.1.1.17) respectively ¹².

Acknowledgements

The authors are grateful to Miss Sylvie Baltzer for skillful technical assistance.

References and Notes

- B.W. Metcalf, P. Bey, C. Danzin, M.J. Jung, P. Casara and J.P. Vevert, <u>J. Am. Chem. Soc.</u> 100, 2551 (1978).
- (2) M.G. Palfreyman, C. Danzin, P. Bey, M.J. Jung, G. Ribereau-Gayon, M. Aubry, J.P. Vevert and A. Sjoerdsma, J. of Neurochemistry, in press.
- (3) The preparation of ethyl tert-butylmalonate and di-tert-butylmalonate is described in Org. <u>Synthesis</u> Col. Vol. IV, 417 (1963) and Col. Vol. IV, 261 (1963) respectively.
- (4) For the use of chlorodifluoromethane as a difluoromethylation agent see a) ref. (1),
 b) T.Y. Chen, S. Lucas and L.H. Sarett, <u>Tetrahedron Lett.</u>, 43 (1961), c) P. Bey and J.P. Vevert, <u>Tetrahedron Lett.</u>, 1215 (1978).
- (5) a) J.L. Ho, G.A. Olah, Proc. Natl. Acad. Sci. USA 75, 4 (1978)
 b) M.E. Jung, M.A. Lyster, J. Am. Chem. Soc. 99, 968 (1977).
- (6) P.A.S. Smith, Organic Reactions Vol. III, 337 (1946) and cited references.
- (7) α -Difluoromethyl ornithine <u>5f</u> and α -difluoromethyl phenylalanine <u>5a</u> thus obtained were identical to samples prepared according to the method described in ref. (1) and (4)c.
- (8) A.L. Henne and J.J. Stewart, J. Am. Chem. Soc. 77, 1901 (1955).
- (9) T. Shiori, K. Ninomiya, S. Yamada, <u>J. Am. Chem. Soc. 94</u>, 6203 (1972); K. Ninomiya,
 T. Shiori and S. Yamada, <u>Chem. Pharm. Bull.</u> (Tokyo) <u>22</u>, 1398 (1974).
- (10) Only unidentified products lacking the difluoromethyl group were obtained.
- (11) J. Kollonitsch, A.A. Patchett, S. Marburg, A.L. Maycock, L.M. Perkins, C.A. Dolduras,
 D.E. Duggan, S.D. Aster, <u>Nature</u> <u>274</u>, 906 (1978) reported to have prepared this dopamine analogue. Its synthesis was not described.
- (12) We are indebted to Dr. G. Ribereau-Gayon and Dr. C. Danzin for measuring the inhibitory properties of these α-difluoromethyl amines.

(Received in UK 17 October 1978)